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INTRODUCTION

A progress report on two aspects of theoretical research on

improved understanding and reduction of wind tunnel wall ‘inter-

ference is given . In part I, the compliant wall concept is

studied for steady, two-dimensional supersonic flow. The com-

pliant wall is modeled as a hinged plate with a torsional spring

restraint. The combinations of flow dynamic pressure , wa ll

geometry, and wall compliance which lead to minimum wall inter-

ference with the flow over a lifting airfoil are identified . In

part II, an improved theoretical model for flow over and through

a slotted wall is constructed. The theoretical relationship

which is obtained between pressure differential across the slot

and mass flow through the slot shows both the linear and quadratic

regimes observed in experiments. Qualitative agreement with

existing experimental data is very encouraging.
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PART I

A COMPLIANT WALL , SUPERSONIC W I N D  TUNN EL*

E. H.  Dowcll

Princeton University

*Thjs work was sponsored by the Air Force Office of Scientific
Research Grant No.77—3337.
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ABSTRACT

The concept of a comp liant wall wind t unn e l , whose

wall deforms in response to aerodynamic load i ng , is studied

theoretically. It is argued that such walls have advan-

tages for the design of wind t unne i w i t h  i~ i n  i mum w~ J I

in te r  ference.
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LIST OF SYMBOLS

AN 
- see equation (17)

AN 
- see equation (25)

b - wind tunnel height

c — airfoil chord

f - see equation (23)

1< — torsional spring stiffness

M - aerodynamic moment about hinge

• M~, - free stream Mach number

N — see equation (17)

P - aerodynamic pressure

s — Laplace transform variable

TN 
— see equation (17)

TN 
— see equation (25)

— free stream velocity

w - downwash

x — streamwise coord inate

z — transverse cordinate

a - angle of attack

(~4~ — 1)1~
’2

A p~ U,,~
2 (~ b)

2
/~K

— wall deflection

— velocity potential

— free steam density

0 — compliant wall rotation
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00 
- compliant wall rotation corresponding to zero

spring twist or A = 0

AO 0 — 0 ~ H

Superscripts

* — Lap lace t r a n sf o r m

TE - t r a i l i n g  edge

ZI — zero interference

— renormalization by multip ly ing or dividing by

~ b

Subscript

D — divergence
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INTRODUCTiON

The s e l f — c o r r e c t i n g  wind tunnel has attracted con—

siderable interest in recent years as a concept for

achieving m i n i m u m  w a l l  i n ter f er e n ce  in a wind t u n ne l .

Sear s, eL. al), have presented ao authorit at iv e account

which is recommended to the r eader .  Amonq t h e i r  i mpor t  ant

conclusions is that a perforated wind tunnel wa il (with con-

trol of the pressures in subdivided p J . e n u m  chambers)  is

superior to control of impermeable , f l e x i b l e  w a f ls  such as

suggested by Cheva ii ier 2 and ~~tody’r
3 in Ret. ~ and 3 and

the discussion in Ref. 1 it is assumed tha t the iniperme—

able , flexible wail is deformed i n t o  an ap r i o r i  d e t er m i ne d

shape of f i x e d  m aq n it u d e .  The se lect ion  of w a l l  shape t un e—

tion and its magnitude is made so as t o  mi nim j~~e w i n d

tunnel wall interference. In the presen t  paper t h i s  con-

cept is broadened to allow at least the magnitude of the

w a l l  shape to vary with flow conditions , e .j .  f lo w  d y n a m i c

pressure. More generally the shape function niiqht vary as well .

As will be shown there are advantages to such a compliant

wall concept.

For simplicity we consider two—dimensional , super so n ic

flow in the context of small perturbation theory. The

compliant wall is modeled as rigid hinged segments whose

compliance is determined by attached springs. As the reader

will appreciate the basic concept allows for a much wider

range of flow regimes and compliant wall characteristics

at the cost of some increased complex i ty in mathematics and ,

ultimately, experimental implementation .
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ANALYSIS

The fluid equation of motion for two—dimensional ,

small perturbation , potential flow is

— = o ( 1)
xx z~i.

2 1/2
where = CM - 1)

The boundary  condi  t ion on the a i r f o i l  is

( 2 )
Z z~ O

where w is  the a i r f o i l .  dowuwash. For an a I r f o i  I a t

st ead y a nq 1 e of at  tack , a , w — U a  . The b o u n dar y  con-

d i t i o n  on the  w i nd  t u n n e l  wa~ 1 i s

= U n ( 4 )
z “ x

z=b/)

whe r e b is t he wind tunnel he i qht and n t h e  dot lee—

tion shape of the wind  t u n n el  ~ali .

To solve (1), subject to  ( 2 )  and (5) , a Lap lace

Transform with respect  to x is used . * ~ol v i  nq t h e  re-

s u l t i n g  o r d i nar y  di  f f e r ent  i a 1 equat on in z and us i nq

the tranformed boundary conditions qives [or the La-

place transform of the velocity potential , 4~~,

w~ s t~b ’
— 

2 e • 2 — tçil *I 
+

z=O — ---- — — - - ( 4 )

~~ t~b/ 2 — ~~~~~~~~ 
t~b 2

*followinq Mi les , Ref.4.

~
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and

= L— ~~ e~~~ ’ 2 + U n~~J c ot t i

s

s~sb .Ic 2 —e • .~~] ( 5 )

Our p r imary  i n t e re s t  is i n  the  f l u i d  p re ssu re , p . w h i c h

is d e ter m i n ed f rom nernou  11 i s e~j ua t ion

p = — ~ U 41 ( 6 )

To f ac i l i t  at e  t h e  in v er s i on s  of ( 4 )  and ( ~) and sub—

seguent ly  d e t er m i n e  p f rom (t . ) , th~ te l low i nq ident i—

t ies  are used .

2 y ( 7 )

e~~~~ ’2 — 
—s~ b 1 

n-- I)

“S

coth s~ b/ 2 
= 1 + 2~ : ~~~~~~ (8 )

n=1

Using these identities and standard inversion

formulae , the following results are ob t a i n e d .

= - 

~~~~~ ~~
_ 

w ( x )  + 
~, 

~~~~~ 
I- w(x-n ~h)

¶ 
+ U~~ (> ~ ~b — ( n — i )  ~b) I ( 9 )

~ .i
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p = p U  Y w (x+h
~ — n~~ ))

z=b/ 2 —- n=l

5).,
— ~~~~~ Ir

>~
(x)~~2 Y (x—n~ h) 1 ( 10)

n= 1

We sha l l  use ( i0~ subsc~juently ; first we turn our attent i Ofl

to (9 )  . The first term in (9) is the value of p i f  t he r e

wer e no wi n d t u n n e l  w a l l  (interference) ; the second term

( f i r s t  summa t I o n )  I S  the effect of a riqid horizontal wall;

the third t e r m  (second summa t ion) is the e f fe c t  of the wind

tunne l  w a i l  def 1 oct ion shape w i t h  respect to the horizontal

reference l i ne .  For zero w a l l  m t  or fereri t’e we choose r~

such tha t the second and t h i r d  te rms  canco l. *

Thus

ZI w( x )  ~ (x— .~b/2) (11)

One way of satisfy inq (11) is to have a rigid but moveable

wall (perhaps composed of hinged scqments) which can be

controlled perfectly to obtain an appropriate ~~. T h i s  is  essen-
5) -~

t i a ll y the concept of Chevall ier and t, oodver . However , any

practical moveable wails will have some compliance or flexi- S

bility ; moreover as we shall show there may be some advantages

to constructing a del i berately compliant wall.

SINGLE SEGMENT WITH HINGE AT LEADING EDGE :

For definiteness, we consider a zero thickness airfoil

* Note there is no wa i l interference if c’~~h s i n c e  then the second
and third terms art.’ identi cally zero. Physically the waves reflected
by the wall do ~ot strike the airfoil.

8
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at constant angle of attack , u , and a compliant wall con—

sisting of a single rigid segment hinged at its leading edge.
S

The compliance is due to an elastic torsional spring as

shown in Fig. 2. It is assumed the leading edge of the wall

segment begins at x ~lb/2; in practice this might require a

sliding leading edge to accomodate changing f~ or a mult i -

segment wall, each segment of which can be locked out or in

as needed . The wa l l, segment has its trailing edge at x

c + ~b/2
- The wall angle for zero spring stretching is the

spring twist angle is A0. Thus the total wall segment angle ,

0, is given by

0 = O
~ 

+ A0 (12)

For the geometry i n  question ,

w = — U1~, ct for 0~~~ x < c

for f~b< x < F b + c  (‘
~3)

2 2

The equation of equilibrium for wall segment is

M + K (0 — 0~ ) = o (14)

where K is the torsional spring constant and M the aerody-

namic moment about the hinge point (positive in the direction

of rotating the segment to close). M is given by

c+~~
M j 2 p (x—Bb/ 2)dx (15)

~b/2 z=b/2

Substitution of (13) into (10) and the result into (15)

gives

-

. - -—-
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M = - K A E c t  AN 
- 0 TN ) ( 16)

where A p t J 2 (~ b) 2 , is an aeroelastic coefficient ,

N-i
AN 

E ~ u (2n—l)
n=i 2

+ N 
~~~ 

— (N—i)]

• 
(N-I) 

+ ( N - i ) )

2

is an aerodynamic  c o e f f ic i e n t , and

N-i  2
T 

( 2 n - l )
N 2

+ ( 2 N — l )  
~~b 

( N — i ) )

• 1 b (N—i) + ( N — 1 ) 1  ,

2
is an aerodynamic coefficient , where the intes5ier , N , is determined by

(N—i) < < N (17)

Substitution of (16) into (14) and solving for I) gives

= E (ATN) AN + 
0
0 1 (18)

a 
_

~~~~~~~~~~

__

~~~

_

~
—

i + A T N

10
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HIN GE AT TRAI L i NG EDGE :

A similar caicuiation for th e  wall segment hinged at

its trailing edge rather than its leading edge gives

r TE TE
o 1 0o 

— (AT
N 

AN
~ ,~1’FE (19)

_ _  

N

r i. —

N

Note that aeroelastic divergence occurs , 0/ ‘
~~ ~~‘, when

A = A
D

CONDiTIONS l ’OR Z ERO WA] .11, I N TER I ’ERE NC E :

From (ii) and (1 3) , for  zero wall inter ference we requ~ ro

(0/
~
)
~~ 

= 1 (20)

Using (20) and (18) or (19) , the aeroelas ti e coot f icieri t at

which zero wall interference’ occurs , \ ‘
~~~, may be computed as

ZI 00 _ i
A = 1— 1 for h .i t i q e  at the lead :nq t’dqt ’ (21)

. 

TN AN

or AZI f~ — ~ 
]

[ 0/~~j 
for hinqe’ at t.he trailing edge (22)

TE TETN AN

Since AZT must be positive to be p h y s i c al l y  meaning f u l  (and

as we shall SCt’ TN 
- AN

>O and T1~~ — ATE ~ 0), then we require that

1 for a leading edge hinge

or 0~ \ 1 for a trailing edge h i n qe

11
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in order to be able to achieve a condition of zero wall interference

by increasing the non—dimensional dynamic pressure \ , f rom 0 to

MULTIPLE WALL SEGMENTS:

Here we briefly indicate the generalization to multiple

wall segments which would be required for an airfoil with

arbitrary downwash. Th e basic concept is that each seqment

has a certain an gle which is maintained relative to those

of other segments by feedback control. In  the limit of a

large number of segments , one may think of the wall havinq

a continuous variation . Hence the genera ii zat ion of (1 3)

is

w = - U~ a f(x)

(23)

where f is the shdp2 of the’ airfoil (and wind tunnel wall).

Using (23) in (10),

p = - p U 2 [a ~ f ( x  + ~~~~~~ 
- nob)

—— n=l
5-

— 0 f ( x — ~~~ ) — 20 ) f(x~~ 
— nj~b)) (24)

n=l

Using (24) in (15) again leads to an equat ion  of t he’ form - - ,

given by (i6) with generalized definitions of AN and TN .

12
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RESULTS

AERODYNAMIC COEFFICIENTS :

AN, TN, A~E, TN
TE are solely function s of c/~3b. They

are plotted in Fig.3. For convenience they are re-normalized

by defining

(25)

etc .

For large C/
Bb , ~~~~, etc., are proportional to c/ Bb. Hence

for large Cl b or small Bb/ , 
~~ 

approaches a constant ,B C

namely .5. In Fig.4, the asymptotic behavior of the aero-

dynamic coefficients is shown.

AEROELASTIC COEFFICIENTS FOR ZERO WALL INTERFERENCE :

The variation ‘~‘~~~~ 

~~b
1 A ZI with for leading and

t r a i l ing  edge hinges is shown in Fig. 5. Also shown for  re-

ference is 
~~ 

( c_) 2 AD for a trailing edge hinge. Note

that to insure that < 3~, one requires C
oil

‘a ‘~~TE
N

( -i. .5 for ~~~~~~~~~~~~~ 0 ) .

WALL ROTATION VS AEROELASTIC COEFFICIENT :

In Fig .6 ,  the wall rotation is shown as a funct ion of

~~~~~ 
ATN ) for various °O/

~
• The asymptotic value =

is used . Recall equations (18) and ( 1 9 ) .  Note that O/~ = 00,
a

at3~ =0 .

13
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DISCUSSION AND CONCLUSIONS

First consider the rationale for a compliant wall wind

tunnel.

(1) Any movable wind tunnel wall will be inherently corn-

pliant anyway , so tha t one mu~’.t take this into account even

in the design of a nominally rigid wall.

(2 ) If one were to try to maintain o
~c~ 

= 1 for zero wall

interference by using a rigid wall , one would have to

measure 0 and a to insure that 0/~ = 1. However , for

a compliant wall , one may set 
~o/ 

appropriately at

A = 0 and then by controlling and measuring A insure

that 0/~ = 1. This presumes the present aeroelastic

‘L~ analysis is sufficiently accurate , of course.

The principal conclusions from the present analysi.s

are

(3) The aerodynamic coefficients associated with the

compliant wail loading rapidly approach their asymp-

totic values for < .5.

(4) The wall segment with a leading edge hinge is more

promising than one with a trailing edge hinge. The

latter is subject to aeroelastic divergence . Also the

compliant wall rotation varies more rapidly with the

aeroelastic coefficient about its optimum value for

zero wall interference for a trailing edge hinge.

Overall the compliant wall wind tunnel shows real promise

as a concept for reducing wind tunnel wall interference.

14
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In closing, it should be noted, that, in principle, a

similar concept using a porous wall may be employed. This con-

cept is briefly explored in the Appendix. The difficulty with

a porous wall is the basic uncertainty regarding its fluid

mechanical bel3avior.

15
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APPENDIX

Porous Wall W ind Tunnel

The f ield equation is

B
2 

~~~ 
— 0 (A—i)

The boundary condition on the ai r foil is

w (A—2)

where w is the airfoil downwash. The traditional

boundary condition on the porous wind tunnel wall is ~

+p u = 0 (A—3)
~ Z zb/~ z=b/2

where b is the wind tunnel height and K~ characterizes po-

rosity of the wind tunnel wall.

Again using a Laplace Transform with respect to x ,

solving the resulting ordinanry differential equation in

z and using the transformed boundary conditions gives for

the Laplace transform of the velocity potential , ~~~ ,

= - [1+y e~~~~~] ~ yne
_nBpb (A-4) 

—

z=0 n=0 H

where
— ~~~~~~~~~~~~~~ (A-5 ) . - -

K KP P
Our primary interest is in the fluid pressure , p, which is

determined from P.ernouiii’s equation

p = -  p
~~

U
00 $,~ 

(A-6)
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Using (A-4), (A-6) and ~tandard inversion formulae , one

obtains
S

p U  np = 
_ _ _ _  

E y w (x-nBb)
z=0 n=0

+ ~ y~~~~~ w (x-(n+l)~~b) (A-7)
n=0

By cho o s i n g y = O ,  (A-7) reduces to

PcOUO3

P w (x)
B

the well known Ackeret result corresponding to zero wall

interference.

From (A—5), y = 0 implies

/ ~zI
f~~~oo~~cx~ \ = K  (A-9)- J  p
\ B  /

Thus by varying the w ind tunnel density, for example , one

could ensure that (A—9) is satisfied and zero wall inter-

ference is achieved . The crucial question is, to what

degree does (A-3) accurately describe the fluid mechanics

of a porous wall? It is this uncertainty regarding the

adequacy of (A-3) which makes the compliant wind tunnel

wall concept an attractive alternative .

The above result for a porous wall wind tunnel has

been discussed by Maeder and Wood 6 and was well known to

earlier workers on wind tunnel wall interference.

__________  
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PART II

A MODEL FOR THE FLOW THROUGH SLOTS IN WIND

TUNNEL WALLS*
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A Model for th e  l l o w  t h r o u ~~j S t o t c  In Wind  Tu_i~~~j  W al I

Donald It. LII is s , Pr inceton Un iversit y

In troduc t ton

Ven t i l at e d  w a l l s  are u sed in the t es t  ~~~ ions ot t ralisonic wi nd

tunne ls in order to  reduce b Lock age ct’fec t s • In some des igns , f t  ow i s a 1 1 owed

to leave ot . enter the tes t  sect ion through s lender  slots paral lel to  the f low

which are dist ributed 8 long t lIC test sect Ion w al ls . The si :e, number , aspect

rat i o and other geonic t r ~ ~~~~~ ~
. t I e s of t he s lo ts  ma va rv cons i tic rab 1 y for

different tunnels. In  order to inc l ude w i n d  t unn e l  w a l l  i n t e r f er en c e  ef fec ts

in t ranson i c flow cat cut at ions the effec t ot the s l ot s on t lit’ w a it boundary

cond i tion must be inc [tided . A ft rst step in this direc t ion i s t o  un derst  and

the flow field in the vicinit y of a single slot .

The type of s lot to be considered is I I lus t rated in 1 i gur e 1 , wh ere

the flow is shown leaving the test sect ion . An experimen t a I plot of p r e s s u re

difference across a slot in nut forn i flüw as a funct ion of the mean veloc it v

throug h the slot , su itably nond I incus iona I I ~~tI , I s shown in 1 i g • . (toet hert

1 %7) • When the mean ye I oc it v is smal l the behavior i s Ii near , whereas

when t tic mean vet  oc i t y i S 18 rge t he behav to r I s no re flea r I y qu ad rat i c . I I

the slot were suhj ected to a nonun i form flow over its length the behavior

of the curve would he at terod in a way i.e [at ed to the st ream line curvat nrc.

The fact t hat the data for dl fterent Maclu numbers co l t  apses wel l onto 8

single curve suggests t hat the behav (or of the s lot I s don i nat ed by the sub-

sonic c ross —flow (V .:  platue) and I nd i c at e s  that t he slot can be anal ~~ed

using slender—bod y t heory.

Numerous Invest Iga tors have stud ted the flow through slot s

analy t ica l  ty and experimental ly ((‘~oether t , 19Ci 1 ; Hcrndt I 9’~ • l97~’) • There

- - ~~.—*•. - •-

- .  - .. ~~~~~~~~~~ - -
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is general agreement that the quadratic behavior seen at higher values of

mean slot velocity in Fig. 2 is associated with the head loss as the cross-

flow separates at some point in its passage through the slot. The dependence

of pressure drop on the square of velocity is the same as that  encountered

for a jet or an orifice flow. Perhaps surprisingly, the linear behavior

that occurs when the mean slot velocity is small has not been properly

explained . Attempts have been made to ascribe the linear region to a viscous

effect in the vicinity of the slot . This explanation appears to be incorrect;

in fact the effect of viscosity is probably to contribute another quadratic

term . Another possibility is that the linear term is related to an inter-

action of the flow with the trailing edge of the slot . For instance , a

blunt trailing edge would cause a flow deflection not unlike that produced

by the holes in a perforated wall which are known to have a linear character-

istic. However, if this were the mechanism , the slope of the linear region

would probably be dependent on Macli number. Also , both Shari) and blunt

edged slots are known to exhibit linear behavior at low mean slot velocities.

In the analysis that follows , the linear behavior is shown to be

a consequence of the correct application of slender body theory to this

problem. Physically, the linear behavior is associated with the region

downstream of the leading edge where the free surface flow is beginning to

form but has not reached its final cross-flow configuration as an orifice or

jet flow. If the mean flow through the slot is small , the cross-flow never

reaches its fully developed state and the linear term dominates. When the

mean flow is large most of the cross-flow resembles a fully developed jet or

orifice flow and the quadratic term dominates. The somewhat analogous s-ituation

in classical slender body theory is that lift forces arise only from regions

~~~~~~~~~~~~~~ ~~~~~~~~~ —u’-——--- ..
~
— — - —--  - - -  —
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in which the cross-flow experiences a streamwise rate of change, e.g. only

from regions of the body where the cross-sectiona l area is chang ing.

In addition to showing how the linear behavior arises, the analysis

also shows how to collapse the data in order to compare the features of

slots of different aspect ratios.

Formulation

For reasons of simplicity only, the discussion is restricted to

incompressible flow. Assume that the f l u i d  is invi scid and irrotationa t ,

thc:i the flow is governed by Lap 1 ac~~ equa t ion

�~v~
-
~ =a~-~ ~~~~~~~~ i~~~~~~~~~

-
~~~~~O

where ~ (x ,y, z)  i s  the velocity potential such that the velocity vector is

given by

The configuration of the slot and the coordinate system are as shown in Fig.

1. The slot is assumed to lie in an infinite p l ane  below a un i form free

stream.

The prob lem will be formulated in terms of the method of matched

asymptotic expansions. The velocity potential can be expressed as

Where is a nondimensiona l perturbation velocity potential . Notice that

when there is no pressure difference across the plane containing the slot ,

i.e. 
~

p - O , then the effect of the slot vanishes. The inner length

scale is defined to be the slot width a. The relevant small parameter for

the problem is € (4g. ~



which is a measure of the flow deflection angle in the slot. Then the outer

length scale is defined to be L~~/€ . Notice that the outer length

scale is not the slot length, ~ , which is not really the appropriate scale

for variations in the streamwise direction . In fact, this procedure could

be used to solve the problem of a semi-infinite slot in which there is no

possibility of using slot length as an outer length scale.

The following nondimensionalization is used for the variables:

This leads to a non-dimensional outer expansion of the form:

4~*= ~*#~~~~~~~4~~*~~*)+ ..

Substituting into Laplace’s equation gives

?~~ ±Qr=o
ax*2.

The inner variables are defined by a stretching of the cross-flow

coordinates -

(note that 5 = y/a , ~ = z/a)

Then assume an inner expansion of the form



F~~—~~’~~~~ ~~~~~~~ ~~~~~~~~~~
-
~~~~~~~~~~~~~~~~~~~~~ -----~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substituting into Laplaces equation gives, to lowest order

which shows that the inner region behaves as a two dimensional potential flow

in the cross flow plane. Solutions must be of the form

~~~~~~

The boundary conditions for the problem are that

P —
~~~~ 0 ~ w.k44J (

~~ 
X 1-t- ’j~-t- z~

- - 0 on the ncj ~id~ wc~(

s~z~f~ p~ ~ ~~ free ~~~ ii fi~ ~Iut

The first and second of these conditions are applied to the outer velocity

potential ~~~j~z*), whereas the second and third conditions are applied
to the inner velocity potential . Any indeterminancy that

remains after the application of the appropriate boundary conditions to each

solution is resolved when the solutions are matched. For the outer solution ,

to the present order of expansion, the slot appears as a line of sinks dis-

tributed along the x-axis. The strength of this distribution is determined

by matching with the inner solution, as is usual with slender body theory.

The boundary conditions for the inner solution require closer examination.

Bernoulli ’s equation in dimensional form is

~~~~~~~~~~
+ = 

~~~~~

- 

~~~~~~~~~~ 
- - ~~~~~~~~~~~ :~~-
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After nondimensionalizing , re-expressing in inner variables, and setting

P PS this equation becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

Retaining only the lowest order terms gives

~: ~ ÷(
~~~~

)

L~~ ç~y~This is the condi t ion that the free sur face be at constant pressure. The

unknown position of the free surface expressed in inner variables is

The solution must also satisfy the condition that the flow be tangent to

the free-surface at the free-surface location. If the free surface is des-

cribed by

~~~~~~~~~~~~~~~~~~~ ~~~~) °

then in dimensional coordinates the flow tangency condition is

Re-expressed in inner variables this becomes

~~~~~~~~~~ + t ~~~~~~~~~ —0
&~* ~~~* ~ :p~

L —

Letting 
~ 

, and using the expansion for € gives

—

~

-- -
~~~

-

~~~~~~~~~~ ] ~~~~~~~~~~~~~~~ 
_ _
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Retaining the lowest order terms gives the flow tangency condition in inner

variables

Solutions and Matching

The general free surface problem in the slot would be extremely

difficult to solve. Therefore this section is restricted to general comments

on the solution structure and on the matching procedure. As stated before

the inner solution must have the form

As is usual for slender body theory, far from the slot the velocity potential

- I will look like a simple source or sink whose strength is related

to the rate of change of cross-sectional area of the flow in the slot.

—

~~~~~~~ ~ {x *)~~0
Where and is the outer limit of the inner solution. Thus

= S’(X *) , where

=

equals the cross-sectional area occupied by the flow in the slot (dimen-

lc.~sional ly ~~ — 0 .. ~~

— ______________ 
_____ _____—
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The outer solution can be expressed as an integral of a source-

sink distribution over the slot

~:p*_ 
-

, ~~~~~~— _ _ _ _

where (~~ 1/L is the nond imensional slot length.

This integral can be shown to have the following form when 1~~=

is small (see Ashley and Landahl , 1965)

~~
. 

___q~ =——- ~~
-
~~~r 

— 1
4~*(~

.*
X~r) 2? (J-~ ~C—~ I

Re—expressing the outer solution in inner variables and using the expression

* .for small I gives the inner limit ot the outer solution .

~~*L ~~~~~ji~)F — 

~~~~~~~~~~~~~ i )  
+

Here L)c— is treated as an (~[1J quantity, as is sometimes done in slender-

body theory. Alternatively, this problem can be treated more formally by a

modification of the expansion procedure, but the results would be the same.

The matching procedure requires that the inner l imit of the outer

~~t
• — &

solution equal the outer limit ofthc inner soiution :C5(~ ~~ . The match-

ing shows that

and then

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
Now the problem for flow in the inner region can he restated . The

velocity potential is of the form

_ _ _ _ _



~~~
= ~~~Mi(x t)

where

Far from the slot ~ ~~

In the slot the constant pressure boundary condition becomes

j The flow tangency condition is

I a~* ~I 0.3 o~
• J I

These equations constitute the final form of the inner prob lem. In  addition ,

depending on the assumed shape of he free surface, other conditions may be

required at the slot edges. For instance, the sides of a sharp edged slot

may require a Kutta condition . The difficulty in solving the problem as

posed above is that both the free surface shape and the velocity potential

are unknown. Certain limiting cases are solved below.

Slot Flow for Small Free Surface Displacements

The nondimensional slot length ~S • When €~ “ then
a. A

• tinder these condition s, since E measures the flow deflec-

tion angle in the slot, the free surface displacement is sufficiently small

_ _ _ _ _  - - 
-
- - - 
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that th e pressure boundary condlt ion can he app lied ~n a 0. Assume that

the quadratic terms in the pressure boundary con dit ion can he neg lected

(they are of order ~*2  ) ; t h us ~
, —~~

(
~~) 

_

~~~ ~t i -~ ~The fol lowing function w i l l  sat I sfy t h~s sinpi i fied pressure boundary con~l i t  ion:

~~~ ( t _ J ( x *,)÷ c)  ~~
(
~~~~~)

where

~~~ 4-~~~~ -o—

and

oC ~~

CI ~~~~~~~ (o~~’t~l~
The f ree su r face shape in the slot is

The cross-sectional area is

~~~~~
)d9 fr ir4



F-~~~~
—-’- i~~

T T
~~.-~~~~~1 ~~~~~~~~~~~~~ 

••
~~~~~ ~

. —. .  ‘~—~~~~: . 
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where is a constant of order unity (to be discussed later). Differentiating

and substituting for g(x*) yields

~~~~~ 
~*
+ Cs + —~

-
~~k G

& 

- ~~~~~a Z9T 4~ (.r x *) ~~ h~— X i

This integral equation must be solved for SI(x*). The presence of the

arbitrary constant C1 should allow the applicat ion of a Kutta condition at

the front of the slot , namely S’ (0) = 0.

Now that the equation has been formulated , it is convenient to change to

a new dimensionless variable 2 x/9., so that

Then

~~~~~~ S’(~)~~ 
—

and the integral equation becomes

4Q~ T/t~
) 

)a(~. e ) ~~~J~~~)1 ~~~~~~~~
where is a redefinition of the arbitrary constant.

The velocity potential which satisfies the boundary conditions on the

crossflow is given by

I_ _ _ _

— -.=~~~~~ --.=~~~~-~~~ -



where is a complex quantity. This velocity potential is asso-

ciated with the potential flow through a slit; the velocity field exhibits

a square-root singularity at the side edges. A brief c a l c u l a t i on g ives

f ~~(q)d~ =

The integra l equation now becomes

~~~~~~~f~~~~~
) ~E~~4 +~~

)— 1r.i~-~1 —

Clearly, from the form of this integra l equation , the sol u t ion  must

have the form

t

Recall the dimensiona l relationships: X~ ~~ X~ l and, oz S(~1~ ~~
Thus 

S(t\ ~tf ~~ 
~~ ~~~) 

~z1z/~ 
~

where and the function G is defined by the above expression.

The volume flow rate from the slot is , to lowest order,

where t~’~~ is the mean velocity through the slot. Substituting the above

expression for S g ives

___ --- --- -.--- - ——---
— 

- --- 
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or

This shows a l inear  r e l a t ionsh ip between the pressure d i ffe rence  across the

slot and the mean v e l o c i t y  through the slot . Recall  tha t th i s  r e l a t i onsh i p

w i l l  hold on ly  for , i .e .  only for small  free surface d i sp lacements .

The rela t ionshi p between pressure difference and mean slot ve loc i ty  can a lso

be written as -

(4~g~~\ =  ~~~19~Q\(&~~i
~y c~J “\

Again , this linear relationship holds only  f or 
(~~~~~~~~ 

L)~. j , wh ich corres-

ponds phys ica l ly  to smal l  f ree surface displacement s compared to the s lo t

width.

The slope of the pressure difference versus velocity curve is

The quantity a/~ is the aspect ratio of the slot . Its appearance is analogou s

to the familiar result in slender wing theory that the l i f t  curve slope is

proportional to the a spect ratio . The fact  that the argument of the func t ion

G is logarthmic suggests that i t s  dependence on slot aspect r a t io  may he

re la t i vely weak . The integra l equation must be solved to determine the func-

t ion C (~.~~~ ).

In order to estimate the type of results given by this  a n a l y s i s , an

approximate solution to the integral equation is now obtained . For very smal l

aspect ratio , , the term involving which has the coefficient ~~~~

will dominate. Then the equation is approximately

_ 
_ _  

_ ___  H
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P h y s i c a l l y  • this equa t ion hat anc &‘ s t he acc c i era t ion of f l u id near the slot  and

the appl ied  pre ssure di  t’t’ercnce ; the e f f e c t  of ’ th e  source—s ink  di  st r i bu —

t Ion on the pressure d i s t r i b u t i o n  in t h e  slot is neglected . (,\ctua liv thi s

approx imat ion j s  not t ’o rma 11 v cons I St ent s I ace it was previously assumed t hat

(-<~_ and ~
( t~ in t in’ der iv at ion of the equat ion .) Set tin s

C~O , ~~~~ t i ~~~~~ S (o) -: Q 
~iVCS

~ 2 )= ((~)Zq~~~~

In tegra t ing g ives

from which

This resu l t g ives ~I t’unc t ion t~~ ~~~~~~~~ ~~~ be viewed as a t ’i i’ st  approxima t ion

to the ac tual  luac t i on t

As a re f inement , the neg le c t ed term s can be inc lu ded  hr approximating

~ 
‘(~ ) as a l inear  func t ion • a form suggested by the appro x I mat e sot Ut I on shove .

One ~~~~~~ ibil its ’ is simp ly to use this ap p r o x i m a t e  sol t s t  ion in the terms

previously neglec ted . Taking th  i s approach and suhst it sit ing into the integra l

equa t ion gi ves

~~~~ 
~~~ I

(
A )  (4~~ 4CJ-’ ~t~’~

] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~ 



— .~~~~~~~~~~~~~~~~~~~
-:-

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

After choosing C1 to satisfy the Kutta condition, the equation

becomes

~~~~~~~~~~~

Although the expression for is now singular at , the function

is integrable. The result is

~~~

‘(i
~~ + 

4~~llf 1
Thus the function which is the second approximation for G is

~~
j

~~
4)= ~~~~~~~~~~~

For a slot of aspect ratio Q. ~ , the resulting values of and

G2 are

The corresponding relationship between pressure difference and mass flow rate

are

= o.s~ ~~~ ~o.4U~~I,
These numbers are considered to be in qualitative agreement with the avail-

able experimental data (e.g. see Fig. 2) where the slope of the pressure versus

flow rate curve seems to fall in the range of less than 0.5 to greater than

unity (Coethert, 1961). Aside from the approximate nature of the solution

presented here, there are several other factors which could affect the accuracy

of the calculation. The presence of a wall boundary layer and a shear layer

in the slot could substantially lower the magnitude of the velocity in the slot.

~~ - --
_ _ _ _  
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Since transonic tunnel speeds are of primary interest, the effect of com-

pressibility must also be considered. All of these effects are believed to

act to increase the slope of the pressure drop versus flow rate curve. Regard-

less of these refinements, the analysis demonstrates that there is a (pre-

viously unrecognized) mechanism for linear behavior of this curve within the

framework of an inviscid slender body theory analysis.

Fully Developed Flow Through the Slot

When the cross-flow in the slot will closely resemble

a fully developed jet or orifice flow (depending on the slot cross-sectional

geometry). In this section, the problem formulation Presented previously is

shown to be consistent with this picture of the flow field . In this case

Away from the ends of the slot the velocity potent ial

is expected to be independent of to lowest order and

the constant local flow rate through the slot, tinder these conditions ,

‘z S ,j ,.~ ~~~~~ T_ _---

~~~~~

Completely neglecting the integra l that appears in the exact expression for

~ (f’ ) means that end effects are being ignored. Different iating the

above gives

~‘(y*) ~~~{i~;;;
- 

~~~~~~~~~~~~~~~~~~~~

This quantity isO~ 
l
/~] away from the ends of the slot and can be neglected

in the constant pressure boundary condition. The quantity 
~~~~~~~~~

. can also be

neglected by the (consistent) assumption that the velocity potential is

independent of 
~~~~~ 

to lowest order. Therefore, the pressure boundary condition

becomes

I

L
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Thus, to good approximation, the velocity potential for the equivalent

steady two-dimensional free surface flow can be used, provided the changes

in free surface shape are confined to the region where the flow has become

essentially parallel and the pressure is nearly constant (= p.). This

situation is illustrated schematically in Figure 3 for the case of a sharp

edged slot.

To obtain the relationship- between pressure difference and flow

through the slot it is not necessary to consider the velocity potential in

any detail. Suppose that the final width of the jet leaving a slot of width

unity is O ’ . The precise value of cr~ depends on the slot geometry, but

typically cr 0.611 for a sharp edged slot, and 0= 1.0 for a thick slot

without internal separation. Applying the boundary condition to the cross

flow in the region downstream of the slot where the flow is almost parallel

gives

where UJ~ is the final cross flow velocity downstream of the slot . Then

= Sc’ = o-’t~ =

Integrating,

S(x*) G~
l
X*

A constant of integration that could be included in the above has been

omitted since end effects are being neglected . Set X ’~ 
~* and re-express In

dimensional form
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As before, the flow rate through the slot is

Hence

or

9-
For a sharp edge orifice 2.68 . This equation was used to generate

the “quadratic behavior” curve in Fig. 2 assuming a sharp ed ged or i f ice ; note

that the agreement with the data is quite good.

Note that the above result can also be rewritten as

( L ~~~~~~~~~

t _ _ ( ~~~~L\z
\~ ~~) a ~~~v~~~)

Since the equation for linear behavior could also be written in an analagous

form, it is suggested that all slender slot behavior can probably be expressed

as

~~~~~~~~~~~ ~ ,\~~aU ) i  
~~~ -

In fact this can be seen directly from the final statement of the inner pro-

blem. For the above form to hold, the cross-sectional shape of the slots

must be geometrically similar and there must be no boundary layer effects.

The parameter may prove to have only a weak influence. It would be

most interesting to plot an appropriate set of experimental data in the form

(ri) VersuS (
~

)
and see to what extent it collapses onto a single curve.
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